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To study evolution of the void in the material of a motor rotor under different working
conditions from a mesoscopic perspective, damage analysis of the rotor has been carried
out based on thermal-mechanical coupling theory. According to the test methods of GB/T
228.1-2010 Part 1 and GB/T 228.2-2015 Part 2, tensile tests were conducted on rotor ma-
terials at different temperatures to obtain basic mechanical property parameters, and pa-
rameters of the fine-scale damage model at different temperatures were fitted by combining
orthogonal tests and a finite element inverse calibration method. Then, the accurate tem-
perature distribution law of the motor rotor was obtained through CFD calculation. Based
on the material parameters and temperature data, the void evolution of the rotor material
under thermal-mechanical load was studied by using the finite element method. The results
show that: under the rated conditions, the stress concentration of the rotor is mainly ap-
peared in the joint with the shaft, the maximum stress was 304.1MPa, which did not reach
the yield limit of the material. No plastic deformation occurred, so the volume fraction of
voids inside the rotor material did not change still for the initial pore volume fraction of
2.5 · 10−3. In the peak condition, the stress concentration appeared in the rotor plate across
the joint of the magnetic bridge and pole shoe with a maximum stress of 354.4MPa and a
small plastic strain of 1.133 ·10−3. The pore volume fraction increased to 2.503 ·10−3, where
the initial pore growth of 2.150 · 10−6 and the secondary pore nucleation of 2.079 · 10−12.
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1. Introduction

The permanent magnet synchronous motor has a broad application prospect in the field of
electric vehicles because of its small size, high power density, direct drive and high transmission
efficiency (Gerada et al., 2013; He and Shi, 2020; Ahn et al., 2017; Xu et al., 2019) but it also
has defects. The rotor magnet steel has high compressive strength but low tensile strength. With
an increase of speed, the rotor and permanent magnet generate a centrifugal force, and a too
big centrifugal force may damage the rotor and affect safe operation of the permanent magnet
synchronous motor (Tenconi et al., 2013; Liu et al., 2021; Zhu et al., 2021; Zhang et al., 2016).
The strength of rotors of the automotive permanent magnet synchronous motor has been

widely researched (Shao et al., 2019; Zhang et al., 2017), and the main research methods focused
on the analytical and finite element methods. The analytical method has advantages of easy
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calculation, high efficiency, and being suitable for the optimal design of rotor strength. But
derivation of the analytical solution is difficult, especially for a complex structure of the rotor,
while the finite element method has high accuracy, but difficult modeling and large calculation.
One of the more classic analytical methods is the equivalent circular method proposed by Binder
et al. (2005), quick in calculation, but only applicable to most of simple structures of high-speed
motors.

It is difficult to consider a variety of loads comprehensively. Li et al. (2014) improved the
equivalent circular method to make calculations more accurate. Feng et al. (2016) not only
improved the equivalent circular method to enhance calculation accuracy, but also proposed an-
alytical calculation of the V-shaped rotor, and the results obtained from the analytical algorithm
were verified by the finite element method. Although the analytical method fully reflects the
advantages of fast calculation, it can only solve some objects with relatively regular geometry
and has very limited applications, so researchers mainly use the finite element method in anal-
ysis of rotor strength of automotive permanent magnet synchronous motors. Gao et al. (2021)
conducted an in-depth study on the rotor strength problem and structural design method of
a high-speed permanent magnet motor, and established a calculation model that can consider
mechanical overload, temperature rise and centrifugal force at the same time. They also used
the finite element method to study stress distribution characteristics and change the law of
rotor structure under different working conditions. From the aspect of thermal-structural cou-
pling, Liang et al. (2011) used the 3D finite unit method to analyze coupled electromagnetic
and centrifugal forces in the rotor of a permanent magnet motor and obtained an accurate 3D
stress distribution in the rotor. Xie et al. (2019) established analytical equations and a multi-
-objective optimization model for the problem of the spacer bridge which is easily damaged
under the centrifugal force of a high-speed V-shaped built-in rotor and found the optimal de-
sign and structural parameters of the permanent magnet rotor. In conclusion, whether from an
analytical or finite element method, the strength of the rotor is studied based on the traditional
strength theory.

To study the effect of nucleation and growth of micro-pores within the material on mechanical
properties of the material on a mesoscale level, the Gurson-Tvergaard-Needleman damage model
(GTN) was introduced to describe the development of tiny defects within the material. The
GTN model was pioneered by Gurson (1977) as a more complete damage intrinsic model, which
was later supplemented by Tvergaard and Needlemann (1984) and Needleman and Tvergaard
(1984) where three coefficients were introduced by considering the interaction of pores inside the
material. A more mature GTN intrinsic model was obtained after modification. Li and Cui (2020)
studied the toughness damage and damage evolution of aluminum alloy materials based on the
GTN model. Sun et al. (2013) predicted the direction of edge crack sprouting and expansion
during cold rolling of silicon steel plates. Fang et al. (2020) showed that the initial hole volume,
by using the GTN model for crack expansion fraction, has a large influence on the prediction
results of the GTN model. Mobasher et al. (2022) and Dong et al. (2021) based on the GTN
model with shear correction accurately predicted the crack extension during pipe shearing. Lee et
al. (2022) modified the GTN model by Hershey Hosford’s non-quadratic isotropic plastic yield
criterion, and better predicted the plastic and ductile damage behavior of 2024-O aluminum
alloy.

Although researchers have done a lot of studies on strength of motor rotors, they mostly
start from the macroscopic structure of the rotor, analyze stress distribution characteristics
of the rotor under different operating conditions, and improve the stress concentration by op-
timizing the rotor structure. They all start from the traditional strength theory and cannot
fundamentally describe the damage evolution process of materials (including micro-porosity,
micro-cracks, impurities, etc.) during plastic deformation without considering the relationship
between the physical mechanism of damage generation and microstructure evolution inside the
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material. The research on damage evolution of rotor silicon steel materials is currently concen-
trated at room temperature, and less research has been done at high temperatures. Yan et al.
(2013) used the GTN model to investigate the damage distribution as well as crack sprouting
and extension in silicon steel plates with tiny notches on the edges during cold rolling. Nioi et al.
(2019) developed a finite element model to simulate the evolution of surface defects in high-Si
electrical steel under one-pass hot rolling operation. However, due to the working environment
of the motor rotor, high-temperature mechanical properties of a non-oriented silicon steel sheet
used in it determine the level of high-temperature resistance and service-bearing strength of the
rotor.
Therefore, to obtain mechanical parameters of silicon steel at each temperature, tensile tests

were conducted at room temperature, 70◦C, 100◦C and 150◦C. Parameters of the GTN damage
model at each temperature of silicon steel were determined by the finite element inverse calibra-
tion method, and then the accurate temperature distribution law of the motor rotor was obtained
by CFD calculation. Then, based on the material parameters and temperature data, the finite
element method was used to study the hole evolution law of the rotor material under thermal-
-mechanical load, in the hope that it will provide some reference to design and development of
a high-speed vehicle drive motor.

2. GTN damage model

In the modified Gurson-Tvergaard-Needleman (GTN) model, the yield function has the following
form

φ =
σeq
σm
+ 2f∗q1 cosh

3q2σh
2σm

−
(

1 + q3f
∗2) = 0 (2.1)

where σeq is the equivalent stress, σh is the hydrostatic stress, σm is the yield stress, q1, q2,
q3 are damage parameters considering the interaction between pores, f

∗ is the equivalent pore
volume fraction, the following expression can be used

f∗ =

{

f for f ¬ fc
fc + k(f − fc) for f > fc

and k =
fu − fc
ff − fc

(2.2)

where f is the void volume fraction, k is the acceleration factor, fc is the volume fraction when
pores are aggregated, ff is the volume fraction at material fracture, fu is the void volume fraction
when the stress drops to 0, fu = 1/q1.
For porous metal materials, the equivalent plastic strain in the matrix material can be

obtained by the equivalent plastic work which is expressed as

(1− f)σmdεpl = σdεpl (2.3)

where dεpl is the equivalent plastic strain increment, dεpl is the plastic strain increment.
The increase in the volume fraction of pores, on one hand is the growth of existing pores, on

the other hand, the nucleation of the grown pores into new pores

df = dfgrowth + dfnucleation (2.4)

where dfgrowth represents the change in volume fraction when the existing pores grow up,
dfnucleation represents the change in volume fraction when the pores nucleate, and they are
governed by the law of conservation of mass

dfgrowth = (1− f)dεpl : I dfnucleation = Adε
pl (2.5)
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and

A =
fn

Sn
√
2π
exp
[

−
1

2

(εpl − εn
Sn

)2]

(2.6)

where I is the second-order unit tensor, Sn is the standard deviation of nucleation, εn is the
average equivalent plastic strain of nucleation, and fn is the percentage of nucleation void volume.

3. Identification of silicone steel GTN damage parameters

3.1. Identification of GTN damage parameters at room temperature

3.1.1. Material tensile test

To obtain mechanical properties of silicon steel materials, it is necessary to conduct a one-
way tensile test on a material specimen. The chemical composition of the test materials is shown
in Table 1.

Table 1. Chemical composition of test materials (% in weight)

C Si Mn P S Ti V

0.016 1.997 0.243 0.131 0.015 0.014 0.018

This test uses national standard GB/T228.1-2010 tensile test of metal materials, Part 1:
Room temperature test method. The dimensions of the tensile specimen are shown in Fig. 1.
INSTRON company in the United States produced a universal material testing machine for
uniaxial tensile tests with tensile speeds of 1mm/min.

Fig. 1. Tensile specimen at room temperature

The nominal stress-strain curve shown in Fig. 2 was obtained by fitting the test data after
the test was completed.
The mechanical properties of silicon steel were obtained, as shown in Table 2.

Table 2. Mechanical properties of silicon steel at room temperature

Material E [GPa] σ0.2 [MPa] Rm [MPa] ν

Silicon 180 405 513 0.30

The stress and strain in the nominal stress-strain curve mentioned above are calculated from
the initial size of the sample. In fact, the size of the sample is constantly changing during the
test, so the true strain εtrue and true stress σtrue need to be obtained through calculation of the
nominal strain εnom and nominal stress σnom to fit the true stress-strain curve, as is shown in
Fig. 2. They can be converted by the following formula

εtrue =

l
∫

l0

1

l
dl = ln

l

l0
= ln(1 + εnom)

σtrue =
F

A
=
F

A
=
F

A0
l
l0

= σnom(1 + εnom)

(3.1)
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where l is the current length of the sample, l0 is its initial length, A is the current area, A0 is
the initial area of the sample, F is the applied load.

The true strain consists of elastic and plastic strain, so when defining plasticity in the finite
element calculation software, the plastic strain value needs to be calculated with the following
formula

εp = εtrue − εe = εrrue −
σtrue
E

(3.2)

where E is the modulus of elasticity.

Fig. 2. True stress-strain curves of silicon steel

3.1.2. Damage parameter identification

For nine parameters of the GTN damage model, where the correction coefficients q1, q2 and q3
are related to the matrix reinforcement material, Tvergaard and Needleman (1984) showed that
when q1 = 1.5, q2 = 1 and q3 = q

2
1 , the results are most suitable for calculation of the body cell

model for metallic materials. f0, fc and ff are obtained by using scanning electron microscope
(SEM) observations. f0 = 0.0025, fc = 0.101 and ff = 0.155 are quoted here from SEM
observations of a thin silicon steel plate by Sun et al. (2013). The three parameters εn, Sn
and fn are given as recommended values based on extensive experiments by researchers, and
for metallic materials at room temperature they are εn = 0.1 ∼ 0.3, Sn = 0.05 ∼ 0.1 and
fn = 0.01 ∼ 0.04 (Huang, 2016).
To reduce the computational cost, an orthogonal experimental design method was used for

three parameters εn, Sn and fn, with 3 levels for each parameter in the range and 3 parameters
for the study, i.e., 3 factors and 3 levels. And without considering the interaction between the
factors, the experimental scheme was obtained as shown in Table 3.

The finite element model was established according to the tensile test in Section 3.1.1, finite
element simulations were performed for all the test scenarios in Table 2, and the comparative
results shown in Fig. 3 were obtained after compiling the data.

By comparing the test and simulation results, it is found that the simulation results of test
No. 3 are closest to the test results, so the GTN fine damage parameters of the silicon steel
material at room temperature can be obtained, as shown in Table 4.
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Table 3. Orthogonal test scheme

Number εn Sn fn

1 0.1 0.05 0.01

2 0.2 0.075 0.01

3 0.3 0.1 0.01

4 0.1 0.075 0.0025

5 0.2 0.1 0.0025

6 0.3 0.05 0.0025

7 0.1 0.1 0.04

8 0.2 0.05 0.04

9 0.3 0.075 0.04

Fig. 3. Comparison of stress-strain curves between test and simulation results

Table 4. Damage parameters of the GTN model at room temperature

q1 q2 q3 f0 fc ff εn Sn fn

1.5 1.0 2.25 0.0025 0.101 0.155 0.3 0.1 0.01

3.2. Identification of GTN damage parameters at high temperature

3.2.1. High temperature tensile test

A high-temperature tensile test and preparation of high-temperature tensile specimens refer
to GB/T 228.2-2015 tensile test of metal materials standard Part 2: High-temperature test
method. The test dimensions are shown in Fig. 4, where: b0 = 12.5mm, head length C = 50mm,
head width B = 35mm, hole diameter D = 15mm, transition R = 25mm, parallel section length
lc = 62.5mm, thickness of 2mm. The tensile speed is the same as in the room temperature tensile
test, but the temperatures are 70◦C, 100◦C and 150◦C.

The yield strength and tensile strength at each temperature were obtained from tests as
shown in Table 5.

As in the material tensile test, the data were extracted after the test was completed and true
stress-strain curves were obtained by fitting according to Eqs. (3.1). The stress-strain curves of
the silicon steel material at 70◦C, 100◦C and 150◦C are shown in Fig. 5.



Damage evolution of vehicle motor rotor... 567

Fig. 4. Uniaxial tensile specimen at high temperature

Table 5. Yield strength and tensile strength of materials at three temperatures

Parameters
Temperature

70◦C 100◦C 150◦C

E [GPa] 176 175 173

σ0.2 [MPa] 375 354 337

Rm [MPa] 495 476 480

Fig. 5. Stress-strain curves at three different temperatures: (a) 70◦C, (b) 100◦C, (c) 150◦C

Table 6. The coefficient of thermal expansion (CTE) of silicon steel materials at different
temperatures

Temperatures [circC] CTE [(1/k) · 10−5]
70 1.758

100 1.524

150 1.402

The coefficient of thermal expansion (CTE) of silicon steel materials at different temperatures
is given in Table 6.

3.2.2. Influence of nucleation parameters on finite element simulation

In the GTN model, the temperature-dependent damage parameters are mainly three nucle-
ation parameters: the average equivalent plastic strain εn, the standard deviation of nucleation
strain Sn, and the volume fraction of nucleation holes fn. The following three parameters are
used to study the effect of parameter variations on the mechanical properties of silicon steel
materials, and to adjust these parameters so that the stress-strain curves obtained from finite
element calculations at each temperature are as close as possible to the test curves at each
temperature.
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Due to space limitation, we take the average equivalent plastic strain εn as an example and
adopt the same treatment method for the standard deviation of nucleation strain Sn and the
volume fraction of nucleation holes fn.

Then we use the εn parameter values obtained in Section 3.1.2 at room temperature as the
reference values, considering a fluctuation range of 50% and keeping the remaining 8 parameters
constant by default.

Table 7. GTN damage parameters for different εn

q1 q2 q3 f0 fc ff εn Sn fn

0.15
1.5 1 2.25 0.0025 0.101 0.155 0.3 0.1 0.01

0.45

After finite element calculation, the stress-strain curves were obtained for different n, and
the comparison with the experimental results is shown in Fig. 6.

Fig. 6. Comparison between stress-strain curves of different εn and experiments: (a) 70
◦C,

(b) 100◦C, (c) 150◦C

As can be seen in Fig. 6, with εn = 0.3 as the reference value, the effect of the average
equivalent plastic strain εn on the mechanical properties of the silicon steel material at the
three temperatures shows consistency, i.e., when εn increases, the finite element calculation
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results approach upward the experimental to curve, while when εn decreases, the finite element
calculations show almost no change.
For the standard deviation of nucleation strain Sn and the volume fraction of nucleation

holes fn, when Sn decreases, the finite element calculation results move upward and approach
the test curve, but the change of fn has no significant influence on the mechanical properties of
the silicon steel material.

3.2.3. Determination of damage parameters at high temperatures

From the analysis in Section 3.2.2, it can be seen that the increasing εn and decreasing Sn can
make the finite element calculation results closer to the experimental results, while the change
of fn has little effect on the mechanical properties of the material, so the values of fn at 70

◦C,
100◦C and 150◦C are still kept the same as those at room temperature, i.e., fn = 0.01.

After a series of trial calculations according to the above rule, the final three sets of GTN
damage parameters were obtained in good agreement with the experiment curves at the three
temperatures, see Fig. 7.

Fig. 7. Fitting results of parameters at different temperatures: (a) 70◦C, (b) 100◦C, (c) 150◦C

From Fig. 7, it can be seen that the mechanical properties of the silicon steel specimens
calculated by the GTN model are in good agreement with the experiment curves, so the damage
parameters of the GTN model at room temperature, 70◦C, 100◦C and 150◦C are obtained and
given in Table 8.

Table 8. The damage parameters of the GTN model

Temperature
Parameters

q1 q2 q3 f0 fc ff εn Sn fn

Room 1.5 1 2.25 0.0025 0.101 0.155 0.3 0.1 0.01

70◦C 1.5 1 2.25 0.0025 0.101 0.155 0.33 0.08 0.01

100◦C 1.5 1 2.25 0.0025 0.101 0.155 0.35 0.06 0.01

150◦C 1.5 1 2.25 0.0025 0.101 0.155 0.37 0.05 0.01

4. Mesoscopic damage study of the rotor of the motor

4.1. Determination of rotor temperature for rated and peak operating conditions

To verify the accuracy of the simulation process and results, experiments and simulations
were carried out on the prototype with the basic parameters shown in Table 9. A temperature
rise test platform has been built as shown in Fig. 8, which mainly included the motor under
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test, dynamometer, new energy battery simulator, constant temperature water tank and a data
acquisition system. The torque corresponding to different working conditions is input to the
dynamometer as the load of the electric drive system under test, and the temperature of the
water inlet is controlled by a constant temperature water tank to cool the electric drive system.
The temperature of the motor is measured by embedding a thermocouple at the end of the
prototype winding. To ensure timeliness and consistency of the data, the data acquisition system
collects real-time temperature recordings.

Table 9. Basic parameters of the prototype

Parameter Value Parameter Value

Stator outer diameter [mm] 145 Rated voltage [V] 350

Stator inner diameter [mm] 90 Rated power [kW] 20.7

Core length [mm] 100 Peak power [kW] 45

Rotor outer diameter [mm] 89 Rated speed [rpm] 4300

Rotor inner diameter [mm] 36 Peak speed [rpm] 15000

Number of slots 8 Rated torque [Nm] 46

Number of poles 48 Peak torque [Nm] 107

Fig. 8. Driving motor temperature rise test bench

Since it is difficult to measure the rotor temperature accurately, the accuracy of calculation of
the rotor temperature of the motor is indirectly proved by measuring the winding temperature.
The calculation method and process for the motor temperature have been described in detail
in the literature (He et al., 2021). The simulated temperature under two working conditions is
compared with the temperature obtained from the test, and Fig. 9 is obtained. Under the rated
working conditions, the temperature of the test prototype rises rapidly in the first 400 s and then
tends to be stable after it slowly rises from 400 s to 1200 s. Although there is still a small increase
in the follow-up, the temperature change does not exceed 1◦C within 10 minutes, and the final
temperature is 116◦C. The temperature of the simulation is 116.4◦C after running for 1800 s, and
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the error is only 0.4◦C. Under the peak condition, the winding temperature of the test prototype
reaches 150◦C at 228 s, and the winding temperature calculated by simulation reaches 150◦C at
208 s. Comparing the time to reach the limit temperature, the difference between the simulation
and the test is 20 s, and the relative error is 8.8%. Through comparison, it is found that the test
and simulation results of the winding temperature under rated and peak conditions are within
the allowable error range, and the temperature change trend is consistent, which verifies the
accuracy of the motor temperature rise simulation calculation model.

Fig. 9. Temperature comparison of winding: (a) rated operating condition, (b) peak working condition

The cloud diagrams of the rotor temperature distribution under the two working conditions
are obtained by calculation, as shown in Fig. 10. The temperature distributions under the two
working conditions are roughly the same, showing the phenomenon that the internal temperature
is low and the external degree is high. Under the rated conditions, the maximum temperature of
the rotor is 91.9◦C, and the maximum temperature difference is 7.3◦C. Under the peak working
condition, because the rotor generates less heat, the heat accumulation is slow and the running
time is short. The maximum temperature of the rotor is 91.3◦C, which is lower than that
under the rated working condition, and the maximum temperature difference is 34.6◦C, which
is significantly higher than that under the rated working condition.

Fig. 10. Temperature distribution of the rotor: (a) rated operating condition, (b) peak working condition
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4.2. Boundary condition setting

The simulation software used in this paper is ABAQUS, the interaction type between the
outer surface of the shaft and the inner surface of the rotor is set to be surface-to-surface
contact, and it is assumed that the contact surfaces are in a small sliding state between them,
which satisfies the tangential friction condition of the small sliding state of Coulomb’s theorem.
Coulomb’s friction jump-in is constrained using a penalty function, and the friction coefficient
of the two surfaces is set to 0.15. The shaft and rotor are assembled with an interference, and
the interference amount is set to 0.01. The tie constraint is used between the permanent magnet
and the rotor. It limits the axial movement on both ends of the rotor; limits any displacement
and rotation at the bearing mounting except for rotation around the shaft, and applies the
centrifugal force to both the shaft and the rotor. The number of finite elements is 33672 and the
shape is hexahedral.

4.3. Internal void evolution in the rotor material

To study the evolutionary behavior of the holes inside the rotor material under rated and peak
operating conditions of the motor rotor, the rotor temperature field obtained in Section 4.1 is
introduced into the finite element model, and a speed of 4300 r/min for rated operating conditions
and 15000 r/min for peak operating conditions are applied.
When the motor is running under rated working conditions, the rotor and shaft adopt an

interference fit, and the centrifugal force generated by rotation at 4300 r/min is not enough to
offset the preload force due to the interference fit, so the stress concentration appears at the
connection between the rotor and shaft, as shown in Fig. 11. At this time, the maximum stress

Fig. 11. Rotor stress cloud diagram at the rated working condition

is 304.1MPa, which does not reach the yield limit of the material. The elastic strain of the rotor
is shown in Fig. 12, and the plastic strain is 0, i.e. the rotor is not plastically deformed.
Since the material itself has a small number of primary pores and second phase particles.

This original defect is considered to be the initial pore inside the material, and it is known from
Section 3.1.2 that the initial pore volume fraction of the silicon steel material is f0 = 2.5 · 10−3.
According to GTN principal equation (2.1), it is known that the change of pores inside the
material is caused by plastic deformation of the material, and under the rated condition, the
rotor is subjected to thermo-mechanical coupling stress that does not reach the yield limit of
the material. The initial pores inside the rotor material do not grow and do not have new pore
nuclei, and the pore volume fraction of the rotor is still equal to the initial pore volume fraction,
as shown in Fig. 13.
When the motor is in the peak condition, the rotor speed will rise to 15000 r/min and

the centrifugal force acting on the rotor will increase further, while the stress concentration
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Fig. 12. Cloud diagram of rotor elastic strain at the rated working condition

Fig. 13. Volume fraction of the rotor hole in the rated condition

between the rotor and the shaft due to the interference assembly will gradually decrease with
an increase in the centrifugal force. Due to the centrifugal force of the permanent magnet, the
stress concentration of the rotor will appear at the connection between the rotor punch plate
spacer and the pole shoe, which is also the easiest part of the built-in rotor structure to break.
The specific stress distribution is shown in Fig. 14, the maximum stress is 354.4MPa.

Fig. 14. Cloud diagram of the rotor stress distribution under the peak working condition
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Fig. 15. Cloud diagram of the equivalent plastic strain of the rotor under the peak condition

When there is a significant increase in the local stress-strain level in the material or com-
ponent, the microstructure inside the material also changes. As shown in Fig. 15, not only a
high stress concentration but also some plastic deformation occurs at the connection between
the rotor punch bridge and the pole shoe. The initial hole grows gradually under the effect of
increasing stress (Fig. 16), resulting in the softening of the matrix around the hole and thus
inducing the nucleation of secondary holes.

Fig. 16. Volume fraction of the rotor hole under the peak condition

Fig. 17. Volume fraction of holes caused by hole growth
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Fig. 18. Pore volume fraction caused by pore nucleation

The hole evolution includes the growth of initial holes and the nucleation of secondary holes,
but although the plastic deformation produced by the rotor at the peak condition is still small,
as shown in Fig. 17, the volume fraction of holes caused by the growth of holes is 2.150 · 10−6.
In Fig. 18, the change in the volume fraction of holes caused by the nucleation of holes is only
2.079 · 10−12. Therefore, the increase of the hole volume fraction of the rotor material under the
peak condition is mainly caused by the growth of the initial holes, and the change caused by
the nucleation of the secondary holes is smaller.

5. Conclusion

• The finite element inverse calibration method combined with the material tensile test at
room temperature was used to calibrate the fine damage parameters of the GTN model of
a silicon steel material at room temperature. On this basis, the damage parameters of the
GTN model of silicon steel at 70◦C, 100◦C and 150◦C were finally fitted by considering the
influence of temperature on the model nucleation parameters combined with the material
tensile test at high temperatures.

• Under the rated operating condition of the motor, the stress is mainly concentrated at the
connection between the rotor and the shaft, and there is no significant stress concentration
at the isolation bridge. The rotor does not reach the material yield limit, and there is no
plastic strain, so the holes inside the material do not change, and the value is still the
initial hole volume fraction.

• When the motor is in the peak operating condition, the centrifugal force acting on the
rotor increases further, the stress is mainly concentrated at the connection between the
spacer bridge and the pole shoe, and the corresponding plastic deformation occurs at the
concentration point, and the volume fraction of the holes inside the material changes, but
it is mainly caused by the growth of the initial holes.
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